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We present a simple but accurate equation of state for double Yukawa fluids
based on the variational series mean spherical approximation (VSMSA).
This allows us to investigate the vapour–liquid equilibrium and its related
thermodynamic properties. The comparisons with computer simulation results of
the Lennard–Jones (LJ) potential suggest the importance of treating the attractive
tail of the potential accurately via VSMSA. The estimated reduced critical
parameters TC¼ 1.342, �C¼ 0.29 and PC¼ 0.135 are in good agreement with
other theoretical and computer simulation results for the LJ system.

Keywords: theory of simple liquids; equation of state of simple liquids; properties
of double Yukawa potential; liquid–vapour coexistence

1. Introduction

Phase equilibrium properties of fluids form the basis for large numbers of separation
techniques used by process industries, and are used to investigate the behaviour of a wide
class of physical systems. The goal of research in this area is to develop a fundamentally
sound methodology for the calculation of the physical properties of coexisting phases at
equilibrium [1,2]. The prediction of phase equilibrium from the knowledge of the
interatomic forces of classical systems can now be done quite accurately. This is mainly
due to considerable progress in advanced perturbation theories [3–8], variational theories
[1,9,10] and computer simulation methods [11–20] which has taken place over the last
30 years. In general, these perturbation techniques introduce a number of errors.
To minimise such errors, one has to use an adequate and accurate reference system
formalism and adopt a suitable criteria for calculating the effective hard-sphere (HS)
diameter, �, at each temperature, T, and density, �.

Recently, Henderson et al. [21] and Duh and Mier-y-Teran [22] reported an explicit
non-empirical equation of state (EOS) for hard-sphere plus single Yukawa (HSY)
potential based on the inverse temperature expansion of the pair correlation function at
contact, within the exact solution of the mean spherical approximation (MSA), which is
known as series mean spherical approximation (SMSA). The SMSA reproduced very
accurate thermodynamic properties for HSY fluids, comparable to Gibbs ensemble Monte
Carlo (GEMC) computer simulation results, except in the vicinity of the vapour–liquid
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critical point [22]. In the present work, we adopt the SMSA for double Yukawa (DY) fluid

and apply the Gibbs–Bogoliubov (GB) variational theory [9,10] for the accurate

determination of the HS diameter. The resulting EOS is called variational series mean

spherical approximation (VSMSA).
Several authors [23–28] have shown that the DY potential, with suitably chosen

parameters, provides accurate thermodynamic properties for simple liquids. The function

form of DY potential with four fitting parameters �0, E, �1 and �2 reads,

’DYðr
�Þ ¼

E"0
r�

e��1ðr
��1Þ � e��2ðr

��1Þ
� �

: ð1Þ

The more realistic continuous potential for spherically symmetric, non-polar real fluids

is the Lennard–Jones (LJ) model potential, ’LJ(r*),

’LJðr
�Þ ¼ 4"0 r�

�12

� r�
�6

h i
: ð2Þ

In Equations (1) and (2), r� ¼ r=�0 is the reduced intermolecular separation, and �0 and
"0 are known to be the position of the zero potential and the depth of the attractive well,

respectively. The LJ potential is chosen because it is the best studied continuous potential

so far ([29] and the references therein) and it gives a reasonable approximate

representation of the properties of real fluids. The LJ potential has the disadvantage of

not being analytically solvable in any integral equation approximation valid in dense fluid

regions. On the other hand, the DY potential has two major advantages: first, it can

closely mimic any realistic or empirical potential, even those with extremely soft core or

short-ranged attractive tail; second, the DY exponential form renders the MSA analytical

solution [30]. Moreover, it facilitates the use of the Laplace transform of the HS radial

distribution function (rgHS(r)), hence it leads to analytical EOS [24–27]. Thus the DY

potential, Equation (1), is an intrinsically interesting simple potential that can be used in

testing theoretical approaches to simple fluids. For the above-mentioned reasons, we

performed a least-square fit to the LJ potential with the DY potential by fixing the zero

position and minimum position via the parameters �0 and "0, and varying the adjustable

parameters E, �1 and �2. The best fit parameters are

E ¼ 2:0198, �1 ¼ 14:7350, �2 ¼ 2:6793: ð3Þ

The two potentials functions are presented in Figure 1. The aim of this work is to

introduce a new method for calculating the thermodynamic properties along the vapour–

liquid equilibrium (VLE) curve for LJ fluids, for which we propose DY potential model

with parameters given in Equation (3). The link between the HS reference system and the

perturbation part of the potential is established via the GB method [9,10]. We find it more

convenient, before proceeding further, to introduce the following reduced quantities

for future reference. For the effective HS diameter �� ¼ �=�0, the density �� ¼ ��30,
temperature T� ¼ �"0ð Þ

�1, pressure P� ¼ P�30="0, isothermal compressibility ��T ¼
�Tð"0=�

3
0Þ, internal energy U� ¼ U=N"0 and the chemical potential �� ¼ �=N"0 with

� ¼ ðkBTÞ
�1, where kB is the Boltzman’s constant. The layout of our article is as follows: in

Section 2, we present the EOS for DY fluids based on the VSMSA. In Section 3, we assess

the accuracy of the proposed EOS by extensive comparison with earlier theoretical results

and computer simulation results for LJ fluids, followed with brief concluding remarks in

Section 4.
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2. Equation of state

Both perturbation theory and variational theory of fluids depend on the decomposition of
a specified pair potential ’ðrÞ into reference part ’0ðrÞ and weak perturbation part ’tðrÞ,
such that

’ðrÞ ¼ ’0ðrÞ þ ’tðrÞ: ð4Þ

Usually, ’0ðrÞ is replaced by the familiar HS potential, characterised with effective HS
diameter �, which could be considered as a temperature and density dependent parameter.
Here we replace ’tðrÞ by ’DYðr

�Þ, in Equation (1), but for r > �. Accordingly, the
Helmholtz free energy per particles of the system is a function of number density, �, and
temperature, T, and can be written within the variational theory of classical fluid [9,10] as

�F ¼ �FHS þ �Ft, ð5Þ

where FHS is the free energy of reference system; normally the system as HSs and
Ft corresponds to the contribution from ’tðrÞ. As regards to the choice of the reference
system, we chose a suitable combination of the ideal gas contribution, Fid, and the scaled
particle theory formalism for HS entropy due to Baus and Colot (BC) [31], F BC

ex , namely

�FHS ¼ �Fid þ �F
BC
ex , ð6Þ

1.0 1.5 2.0 2.5 3.0

−1.0

−0.5

0.0

0.5

1.0

1.5

LJ DY

φ 
(r

*)
 ε

−1

Reduced interatomic separation, r*

Figure 1. Intermolecular potential of LJ fluid. The usual LJ potential (dashed line) and the fitted
DY potential (solid line).
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�Fid ¼ �1þ lnð�Þ �
3

2
lnðTÞ �

3

2
ln

2�mkB
h2

� �
, ð7Þ

�F BC
ex ¼ ðaþ 3b� 1Þ lnð1� 	Þ þ

6þ 2aþ 6bð Þ	� 3þ 3aþ 9bð Þ	2 þ 2b	3

2 1� 	ð Þ
2

: ð8Þ

The last term in Equation (7) has no effect in calculating the VLE curve; however,

m denotes the molecular mass and h is the Planck’s constant. In Equation (8), a¼ b¼ 2/3

and 	 ¼ ðð�=6Þ��3Þ is the packing fraction. The first-order perturbation contribution

reads

�Ft ¼ 2��

Z 1
�

�’DYðrÞgHSðrÞr
2 dr, ð9Þ

where gHS(r) is the HS radial distribution function. The use of the DY potential further

facilitates the acquisition of an analytic expression for Ft by introducing the Laplace

transform of (rgHS(r)), defined as

Gð�Þ ¼

Z 1
0

rgHSðrÞ e
��r dr: ð10Þ

Equations (1), (9) and (10) yield

�Ft ¼
12	E

��T�
e�1 Gð��1Þ � e�2 Gð��2Þ
� �

: ð11Þ

Here, �� ¼ ���. One can readily derive analytic expressions for the pressure, P, and the

chemical potential, �, from Equation (5), via the standard thermodynamic relations

�P ¼ �2ð@�F=@�ÞT and �� ¼ �Fþ ð�P=�Þ, as the sum of HS and perturbation

contributions

�P ¼ �PHS þ �Pt ð12Þ

and

�� ¼ ��HS þ ��t: ð13Þ

It is straightforward to carry out the derivative, with respect to �, for Fid, FHS and Ft

of Equations (7), (8) and (11), respectively, yielding

�PBC
HS ¼

1þ 	þ 	2 � a	3 � b	4

ð1� 	Þ3
, ð14Þ

�Pt

�
¼ �Ft þ

12E	2

��T�
e�1G0ð��1Þ � e�2 G0ð��2Þ
� �

, ð15Þ

where G0ð��Þ ¼ ð@Gð��Þ=@	ÞT. Then the chemical potential contributions are simply

��HS ¼ �FHS þ
�PHS

�
and ��t ¼ �Ft þ

�Pt

�
: ð16Þ
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The detailed expression of G(�*) can be obtained in an analytical form from the recently

developed SMSA of [21,22]:

G �ð Þ ¼
e��

�

24	

X5
n¼1

Vnð�
�, 	Þ

nðT�Þn�1
: ð17Þ

The sub-functions Vnð�
�, 	Þ are given in closed analytical form in [22]. We carried out the

derivatives, V0nð�
�, 	Þ, analytically, with respect to 	, but the final expression is quite

lengthy to communicate in the present article.
The temperature and density dependence of the effective HS diameter � can be

introduced via the GB variational approach [9,10], �F��FHSþ �Ft, namely,

@�F

@�

� �
�,T

¼ 0 at �GB: ð18Þ

It may be noted that the optimising diameter � achieves a best free energy estimate of

Equation (5) and establishes the link between FHS and Ft.
The scaled particle theory (SPT) formalism, Equations (8) and (14), for HS fluid

lead to three well-known equations of state according to the scaling parameters a and b.

For example, a¼ b¼ 0 (compressibility EOS), a¼ 3, b¼ 0 (virial EOS) and a¼ 1, b¼ 0

(Carnahan–Starling EOS). BC [31] suggested the values a¼ b¼ 2/3. The comparison of the

performance of the four equations of state with both MC and MD computer simulations

results of the compressibility factor ZHS ¼ ðPHS=� kBTÞ suggested the superiority of the

SPT equation of state based on the BC estimated parameters (a¼ b¼ 2/3) on the other

theoretical equations of state.

3. Results and discussion

We begin with the evaluation of the free energy and pressure contributing terms in order to

visualise the effect of each component on the EOS. Typical results are shown in Table 1 for

the entire density range at each temperature, covering the temperature range of the

vapour–liquid phase diagram of LJ fluid. In principle, the free energy and pressure are

quite sensitive to density variations. At low densities, the main effect comes from the HS

contribution; by increasing density the attractive tail contribution builds up considerably.

The same trend is observed at all temperatures. Moreover, we present the value of each

term in the summation of the SMSA, given by Equations (11), (15) and (17). Important

features of the series expansion are found. The main contribution is always due to the first

term while the higher order terms show dramatic decrease in magnitude. The third and

fourth terms contribute only at intermediate densities, while the fifth term has almost

negligible effect at all densities.
To assess the performance of the present EOS, we present extensive comparison

in Tables 2–5 with reported theoretical results from other equations of state and with the

computer simulation results available for LJ fluid. In Tables 2 and 3, we present our

estimate of the free energy and pressure, respectively, which are compared with a similar

EOS reported by Gonzalez and Silbert [24] and with results of the pioneering Monte Carlo

simulations of Hansen [32]. Gonzalez and Silbert [24] reported an EOS of DY potential

fitted to LJ potential but with the variational Percus-Yevike approximation (VPY), i.e. the

GB method was also used and the Laplace transform of PY radial distribution function
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[33] was employed. For the HS formalism, Gonzalez and Silbert considered two routes, the
virial (Vir) route and the mixed virial-compressibility route (CS) reported by Carnahan
and Starling [34]. It is obvious from Table 2 that the free energy calculated via the present
EOS compares well with computer simulation results, especially at higher temperature
range in comparison with Gonzalez and Silbert results [24]. While Table 3 shows that the
virial routed EOS gives closer compressibility factor to the computer simulation results
than the present EOS, especially at T*¼ 1.0, for higher temperatures, T� � 1:35, the two
results are quite close, with average deviation �� 8%, which is not dramatic. The origin
of these discrepancies could be attributed to the attractive tail contribution to the total
pressure, Pt. Gonzalez and Silbert employed the Laplace transform of gHS(r) within the PY
approximation while we employed the recent approach, SMSA discussed in Section 2.

Table 1. The Helmholtz free energy components and pressure components as in the present EOS
together with the respective components of Ft and Pt due to series expansion terms (for comparison).

Helmholz free energy F
N"0

T* o* F FBC
hs Ft Ft1 Ft2 Ft3 Ft4 Ft5

Eq. (5) Eq. (6) Eq. (11)
Series terms

Eqs. (11) and (17)

0.7 0.01 �3.60857 �3.53702 �0.07156 �0.05884 �0.01241 �0.00029 �0.00001 0.00000
0.1 �2.51284 �1.80903 �0.70380 �0.60322 �0.07817 �0.01812 �0.00348 �0.00081
0.5 �3.21411 0.08714 �3.30125 �3.29691 0.04322 �0.02952 �0.01229 �0.00575
0.9 �3.69524 2.12077 �5.81602 �5.92336 0.10716 0.00063 �0.00034 �0.00010

1.0 0.01 �5.65535 �5.58811 �0.06724 �0.05855 �0.00853 �0.00015 0.00000 0.00000
0.1 �3.78552 �3.12151 �0.66401 �0.60017 �0.05345 �0.00899 �0.00121 �0.00020
0.5 �3.68312 �0.44284 �3.24028 �3.25688 0.03817 �0.01546 �0.00458 �0.00152
0.9 �3.33612 2.28204 �5.61816 �5.71042 0.09217 0.00030 �0.00017 �0.00004

1.3 0.01 �7.84117 �7.77641 �0.06476 �0.05822 �0.00645 �0.00009 0.00000 0.00000
0.1 �5.21485 �4.57237 �0.64248 �0.59645 �0.04002 �0.00539 �0.00056 �0.00007
0.5 �4.31472 �1.12283 �3.19189 �3.21474 0.03535 �0.00969 �0.00224 �0.00058
0.9 �3.17158 2.25890 �5.43048 �5.51334 0.08281 0.00017 �0.00010 �0.00002

Pressure
P�3

0

"0

P PBC
hs Pt Pt1 Pt2 Pt3 Pt4 Pt5

Eq. (12) Eq. (14) Eq. (15)
Series terms

Eqs. (15) and (17)

0.7 0.01 0.00662 0.00712 �0.00050 �0.00059 �0.00012 �0.00001 0.00000 0.00000
0.1 0.03607 0.08356 �0.04749 �0.06167 �0.00326 �0.00263 �0.00079 �0.00025
0.5 �0.06358 0.97405 �1.03763 �1.70370 0.12320 0.02894 0.01221 0.00653
0.9 2.86394 5.24340 �2.37945 �3.94745 �0.02134 0.01388 0.00398 0.00115

1.0 0.01 0.00950 0.01017 �0.00067 �0.00059 �0.00008 0.00000 0.00000 0.00000
0.1 0.05408 0.11913 �0.06505 �0.06125 �0.00215 �0.00131 �0.00027 �0.00006
0.5 �0.18195 1.36308 �1.54503 �1.65643 0.09088 0.01459 0.00431 0.00163
0.9 3.49178 6.93010 �3.43832 �3.43718 �0.01204 0.00867 0.00183 0.00039

1.3 0.01 0.01238 0.01322 �0.00084 �0.00058 �0.00006 0.00000 0.00000 0.00000
0.1 0.07204 0.15456 �0.08252 �0.06076 �0.00155 �0.00079 �0.00013 �0.00002
0.5 �0.26341 1.74107 �2.00448 �1.61036 0.07324 0.00883 0.00200 0.00059
0.9 4.04474 8.50781 �4.46307 �2.99712 �0.00704 0.00611 0.00103 0.00018
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Also, one of the reasons could be the numerical derivative error imposed by Gonzalez and

Silbert, as in the present EOS all derivatives are performed analytically.
Next, we turn to the calculation of the VLE bimodal line, following the

thermodynamic conditions for the phase equilibrium, which imply that the coexisting

phases should have an equal pressure and equal chemical potential, namely

PðT, �VÞ ¼ PðT, �LÞ, ð19Þ

�ðT, �VÞ ¼ �ðT, �LÞ: ð20Þ

By enforcing equality of pressures and chemical potentials in the two phases at a fixed

temperature, we are able to uniquely determine the densities �V and �L of the coexisting

vapour and liquid phases. Figure 2 shows the high-temperature phase diagram of LJ fluid

determined from the present EOS based on the VSMSA formalism and the NPT-MD

simulation results [16]. We carried out three sets of calculations for the VLE curve for three

different criteria of the effective HS diameter �: (i) the GB method given by Equation (18);

(ii) the Barker–Henderson (BH) perturbation theory [3], which leads to the explicit form

�BH ¼ �0

Z 1

0

1� e��’DYðr
�Þ

� �
dr�; ð21Þ

Table 2. The Helmholtz free energy of LJ fluid compared with computer simulation and other
equations of states.

F=NkBT

Present work
Theoretical calculations

Computer simulation
T* �* GB–BC-SMSA GB-Vir-PY [24] GB–CS–PY [24] MC [32]

0.75 0.6 �4.109 �4.05 �4.00 �4.24
0.7 �4.328 �4.38 �4.22 �4.53
0.8 �4.419 �4.52 �4.27 �4.69

1.15 0.6 �2.257 �2.12 �2.08 �2.29
0.7 �2.181 �2.08 �1.98 �2.25
0.8 � 1.989 � 1.92 � 1.73 � 2.06
0.9 � 1.616 �1.59 �1.27 �1.79

1.35 0.6 �1.752 �1.62 �1.57 �1.77
0.7 �1.596 �1.48 �1.38 �1.65
0.8 �1.331 �1.23 �1.06 �1.41
0.9 �0.900 �0.83 �0.55 �1.02
0.95 �0.600 �0.56 �0.21 �0.72

2.74 0.6 �0.332 �0.21 �0.17 �0.34
0.7 0.034 0.16 0.22 0.01
0.8 0.478 0.59 0.70 0.43
0.9 1.035 1.12 1.29 0.93
1.0 1.746 1.78 2.04 1.59

Notes: GB (Gibbs–Bogoliubove variational method), BC (Baus–Colot EOS for HS reference
system), Vir (Virial EOS for HS), CS (Carnahan–Starling EOS for HS), PY (Percus–Yevick
approximation for gHS(r) for the perturbation contributions Ft and Pt), SMSA (series mean spherical
approximation) and MC (Monte Carlo simulation).
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and (iii) the Verlet and Weis (VW) [35] fitted expression,

�VW ¼
0:3837þ 1:068=T�

0:4293þ 1:0=T�
: ð22Þ

In this comparison we mention two important points. However, the results for the GB and

BH methods are good in the vapour side but are slightly less accurate in the liquid side of

the VLE curve. The curve with the GB method converges for a better critical temperature

than that with the BH method. Moreover, we calculated the chemical potential � from

Equation (13), internal energy, U ¼ F� T @F=@Tð Þ�, and isothermal compressibility,

�T ¼ 1=� @�=@Pð ÞT within the present EOS with the GB method. All calculations are

carried out along both the vapour and liquid sides of the VLE curve of LJ fluid. The

results are presented in Table 4, and compared with the NPT-MD simulations of Lotfi

et al. [16]. It is worth mentioning that the pressure is in excellent agreement with NPT-MD

results and shows the right behaviour, as it increases by increasing temperature exactly as

is expected in all expanded liquids. The isothermal compressibility diverges rapidly by

approaching the critical temperature, which is the typical criteria for the critical

phenomena. Both the chemical potential and internal energy agree quite well with the

Table 3. The compressibility factor for LJ fluid compared with computer simulation and other
equations of states.

P=�kBT

Present work
Theoretical calculations

Computer simulation
T* �* GB–BC-SMSA GB-Vir-PY [24] GB–CS–PY [24] MC [32]

1.00 0.60 2.218 1.55 3.46 �1.60
0.65 �0.056 �0.30 0.08 �0.25
0.75 0.843 0.54 1.25 0.56
0.85 2.589 2.20 3.38 2.27
0.90 3.900 3.43 4.91 �3.5

1.35 0.10 0.718 0.78 0.78 0.72
0.20 0.498 0.56 0.56 0.50
0.30 0.348 0.38 0.39 0.35
0.40 0.289 0.28 0.32 0.27
0.50 0.375 0.34 0.44 0.30
0.55 0.500 0.45 0.60 0.41
0.65 0.998 0.91 1.22 0.80
0.75 1.969 1.82 2.38 1.77
0.85 3.641 3.36 4.29 3.37
0.95 6.313 5.78 7.22 6.32

2.74 0.65 2.367 2.37 2.56 2.22
0.75 3.319 3.24 3.57 3.05
0.85 4.721 4.49 5.03 4.38
0.95 6.725 6.22 7.04 6.15

Note: All symbols are as in Table 2.
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computer simulation results. They change slightly along the VLE curve, which is typically

the case for fluids with long-range attractive forces, like LJ fluid.
Figure 2 highlights the main idea that all VLE curves fail to show good performance in

the near vicinity of the critical point, with large uncertainty in determining the critical

parameters TC and �C. This is a strong indication that the behaviour of the fluid near

criticality is independent of the kind of perturbation or variational scheme used. This is an

inherited problem due to the lack of knowledge on the correlation function treatment at

the near vicinity of the critical point. Instead, the critical parameters TC, �C and PC can be

estimated by extrapolation analysis of the available values in the near critical region,

following a fitting procedure used by several authors [36,37]; the VLE critical point was

determined by assuming the scaling law �L � �V ¼ C TC � Tð Þ
0:32 and the law of rectilinear

diameters �L þ �V ¼ 2�C þD T� TCð Þ where C and D are fitting parameters. The

exponent 0.32 represents the critical exponent in case of classical fluids. Then the values

of TC and �C can be inserted in Equation (12) to obtain the critical pressure, PC. Our

estimated values of the critical parameters of LJ fluid are presented in Table 5, collectively

with the results of most of the previous calculations. For the GB method, our estimate of

TC agrees well with the molecular dynamics simulation results [13] and with the theoretical

results [6,8,39], while our estimate of critical pressure, PC, is slightly overestimated and our

critical density �C is relatively underestimated, compared to most of the reported

calculations.

Table 5. Critical parameters of LJ fluid compared with the literature.

T�c ��c P�c

Equation of state
Present work
(GB method Eq. (18)) 1.342 0.278 0.135
(BH method Eq. (21)) 1.350 0.2933 0.141
(VW method Eq. (22)) 1.251 0.296 0.133

Tejiro et al. [38] 1.310 0.300 –
MSA [8] 1.340 0.293 –
PY [39] 1.340 0.340 –
OCT [6] 1.348 0.349 –
HRT [7] 1.329 0.314 –

Computer simulation
Johnson et al. [17] 1.313 0.310 0.130
MC [15] 1.316 0.304 –
MC [19] 1.312 0.316 0.1279
MC [18] 1.326 0.316 –
GEMC [14] 1.3 0.317 –
MC [12] 1.3 0.33 0.130
MC [11] 1.36 0.36 –
NPT-MD [20] 1.313 0.304 0.125
NPT-MD [16] 1.310 0.314 0.126
MD [13] 1.35 0.35 0.142

Notes: GB, BH and VW stand for Gibbs–Bogoliubove, Barker–Henderson
and Verlet and Weis perturbation methods, respectively. MC and MD refer
to Monte Carlo and molecular dynamics simulations.
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4. Conclusions

The authors show that the DY potential, with suitably chosen parameters, in conjunction

with the variational theory based on BC [31] scaled HS formalism and on the SMSA [22],

provides a simple analytic expression for the thermodynamic properties of simple fluids.
Moreover, the authors discuss the reasons that the combination of the BC and the

SMSA, within the GB variational method, form the best EOS, which leads to a good

agreement with the computer simulation results and is consistent with the earlier

theoretically-based equations of state. However, the present EOS predicts pressures,

internal energies, isothermal compressibilities and chemical potentials which are in

relatively good agreement with computer simulations. The liquid density is slightly

underestimated. The thermodynamic properties of the vapour side of the VLE curve are in

excellent agreement with computer simulation results, which may be related to the nature

of the high-temperature expansion formalism employed in the present work.
Quite recently, we applied the present EOS to investigate the thermodynamic

properties of C60 [28] by fitting the DY potential to the Garifalco potential [40]. The
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Figure 2. Liquid–vapour coexistence curve of LJ fluid obtained from the present EOS using
three methods for calculating the effective HS diameter, �: Gibbs–Bogoliubov method [9] (solid
line), Barker–Henderson method [3] (dotted line) and Verlet and Weis method [35] (dashed line).
Results of the molecular dynamic computer simulation of Lotfi et al. [16] are also shown (solid
circles).
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performance of the present EOS was remarkably good – comparable to the computer

simulation and to the other theoretical models. On the other hand, Tejero et al. [38,41]

showed the applicability of the DY potential to colloidal fluids, as well as to monatomic

fluids.
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